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Wavelet analysis of a Gaussian Kolmogorov signal 
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Abstract. Several attempts have teen made recently to use waveleb transforms for extracting 
histograms of scaling exponents from experimental turbulence data Similar techniques are here 
applied to a Gaussian signal having a Kolmogorov f energy s p e c ” .  This is an instance of 
the class offraciiowl Bmwnian mofions, having scaling exponent f almost everywhere. For the 
Gaussian signal, a spurious non-uivial hislogam is obtained by applying a Mexican hat wavelet 
transform analysis. Onthe  0the.r hand, we show that the use of complex wavelets and, even 
more so. the application of an optimal wavelet ironsfom method strongly reduce the spurious 
fluctuations observed in the processing of the Gaussian signal. 

In Kolmogorov’s theory of fully developed turbulence [l], global scale invariance in the 
inertial range is assumed the statistics of the longitudinal velocity increments &U = 
v(x + e )  - v(x)  is invariant under the scaling transformation 

s u u  + hh&v (1) 

( ( & v ) 3 )  = -;€e (2 )  

(&U”) - er, (3) 

where h is the scaling exponent. In ordkr to select the value of h,  the relation proved by 
Kolmogorov himself [Z] 

is used (here, E is the average rate of energy dissipation). If Cp denotes the scaling exponent 
of the structure functions 

~ ~ 

the prediction 5, = p / 3  immediately follows. Actually, the experimental measurements 
performed up to now [3] show that the cp function is not linear, bending downwards for 
high values of p.  In order to provide an interpretation for these results, the.multihctal 
model [4] was proposed. Global scale invariance is replaced by local scale invariance. 
The scaling exponent is then a function of the point and the set of points having the same 
singularity exponent h is a fractal set having dimension D(h).  An interpretation for an 
arbitrary C p  function in terms of another arbitrary function D(h)  can be provided.  it is then 
natural to search for new independent tests of the model. 

A first possible method is to study global properties. Indeed, it has been shown [ 5 ]  
that the multifractal model predicts a new form of universality of~the energy spectrum with 
respect to the Reynolds number in the near-dissipative range of scales. One other possibility 

$ Permanent address: Inlernalional Institute of Mathematical Geophysics, Academy of Sciences, 19-2 
Warshavskoe sh 113556 Moscow, USSR. 

0305-4470P3R26093t07507.50 @ 1993 IOP Publishing Ltd 6093 

. 



6094 M Verpssola et al 

in the same spirit is the study of the moments of the energy dissipation relating the local 
energy dissipation and the velocity increments trough a relation proposed by Kolmogorov 
in 1962 [6]. In both cases, the analysis of the experimental data does not contradict the 
multifractal model [7-9]. 

An altemative method is to study local properties. The natural tool for this kind of 
approach is represented by wavelet transforms. In the context of dynamical systems this 
technique is able to reveal the successive fractal branchings characteristic of self-similar 
invariant measures on strange attractors [lo]. Due to their ability to detect singularities, 
wavelet transforms were then applied to the analysis of turbulence data [l I]. In the latter 
case bifurcations are also observed, suggestive of some form of energy cascade. In a 
subsequent work [I21 it was actually shown that bifurcations are already observed in the 
case of a Gaussian process. In this case, branchings have no dynamical meaning because 
they are due to a kinematic levelcrossing phenomenon. In the same work, a histogram of 
scaling exponents was also obtained. Scaling exponents were calculated by making a least- 
squares fit of the plot of the logarithm of the absolute value of the wavelet transform versus 
the logarithm of the scale aver the region corresponding to the inertial range. The analysing 
wavelet used was the Mexican hat  The measured histogram show a considerable scatter 
around the value f including negative values. It was then suggested that the histogram 
reflected the existence of various scaling exponents. 

We also mention that wavelet transforms have also been used as a global processing 
technique allowing one to improve the measurements based on structure functions [13]. 

In this paper we shall first perfom the wavelet analysis of a Gaussian globally self- 
similar signal having a Kolmogorov $ energy spectrum. A single exponent f is then 
present. Actually, when the signal is processed as in [12], the same scatter in the histogram 
of the scaling exponents is found. The phenomenon of spurious exponents is due to finite 
inertial range effects. We then show that the presence of spurious exponents can be strongly 
reduced by using complex wavelets and taking advantage of the freedom in the choice of 
the analysing wavelet to choose an optimal wavelet transform, as proposed in [14]. Finally, 
these techniques are applied to the same turbulence data used in [IZ]. The scatter of the 
measured exponents around the value f is strongly reduced, thus confirming the spurious 
nature of the histogram shown in [12]. 

Let us briefly recall the basic properties of wavelet transforms. The wavelet transform 
at the point x of a signal u(x )  is defined as 

The parameter a > 0 will be referred to as the scale and the analysing wavelet g(.) satisfies 
the zero-average constraint 

A wavelet that is commonly used is the mexican hat: g(x)  = -d2exp(-x2/2)/drZ. The 
convolution (4) can be regarded as a mathematical microscope where a and g govern the 
magnification and the kind of optics. The importance of wavelet transforms is essentially 
due to their capability of revealing scaling laws. In fact, it can be proved 1151 that when 
the increments Iu(x + p) - u(x) [  of the original signal behave as a power law p h .  the 
corresponding wavelet transform will behave as a". How the latter relation should be 
recasted in the case of globally self-similar stochastic processes l i e  K41 turbulence or the 
class of fractional Brownian motions [I71 has been studied in [16]. It can be shown that 
the wavelet transform has a scaling part but also a noisy contribution. If the logarithm 
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Figure 1. The histogram of scaling exponenti for fractional Brownian signal of exponent f .  
The quantity N ( h )  denotes the number of points where the meowred scaling exponent is h.  
The ratio between the maximal and the minimal scale used for the fit is 500. The wavelet used 
is the Mexican hat. 

of the absolute value of the wavelet transform is plotted versus the logarithm of the scale 
a ,  stationary fluctuations are superposed on the straight line corresponding to the scaling 
exponent. In particular, strong negative fluctuations are expected due to the fact that the 
expectation value of the wavelet transform is zero. When a finite range of scales is available, 
the determination~of the scaling exponent by a least-squares fit can then be very noisy. 

In  order^ to gain a better understanding of the results obtained in turbulence, we have 
processed a fractional Brownian motion of exponent f in the same way as in [12]. The 
signal is generated through its Fourier transform. The analysing wavelet used is the Mexican 
hat. The range of scales used to extract scaling exponents is chosen in such a way that, 
the ratio between the maximum and the minimum scale is 500, a value comparable to the 
width of the inertial range in turbulence data. The scaling exponents are estimated in 2000 
points out of 200 000 data points by a least-squares fit of the logarithm of the absolute 
value of the wavelet transform versus the logarithm of the scale. The resulting histogram 
is shown in figure 1. The most striking feature is the considerable spurious scatter of the 
measured exponents around the true value f .  The dispersion around the mean value 0.34 
is 0.21. Figure 1 looks very similar to the histogram obtained by analysing turbulence data 
(cf figure 4). The comparison leads to invalidate the interpretation of the scatter as an 
indication of the existence of various scaling exponents which was proposed in [U]. 

In order to have meaningful local information about the kind of self-similarity (if any) 
involved in turbulence a more reliable way of estimating scaling exponents must be sought. 
Hereafter, we shall discuss complex wavelets and the optimal wavelet technique. An 
altemativemethod is that of wavelet transform modulus maxima, introduced in [18]. 

A first way of reducing fluctuations is through the use of complex wavelets 1191. 
Practically, the Fourier transform &k) of the complex wavelet gc(.) is obtained from the 
Fourier transform i(k) of an usual real wavelet g(.) by setting the negative wavenumbers 

~ ~ 

~ 
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to zero 

Let us now denote by IT,\ the modulus of the complex wavelet transform T, obtained by 
using gc as analysing wavelet and by T8 the wavelet transform using g. The reduction of 
noise is due to the fact that sine and cosine, and then the real and the imaginary part of the 
wavelet uansform, are not in phase: it is likely that when the real part is near to zero the 
imaginary’ part will not and conversely. The zero level crossings of ITgc[ are then strongly 
reduced with respect to those of T,. In order to have a quantitative confirmation, we have 
studied analytically the wavelet transform of a Gaussian process . The results concerning 
the second- and third-order moments are as follows: 

and the analysis of higher order moments shows that the reduction in the relative fluctuations 
increases with the order of the moment. The previous qualitative arguments concerning the 
reduction of noise produced by the use of complex wavelets are then well supported by (7). 

The second way we have used to reduce fluctuations is the optimal wavelet technique, 
suggested in [14]. Let us briefly recall the proposal. As discussed in [16], the statistical 
properties of the noisy part of the wavelet transform depend on the analysing wavelet, while 
the scaling exponent does not. It is thus reasonable to search for the analysing wavelet that 
minimizes fluctuations. Such a wavelet can be constructed as a linear combination of several 
analysing wavelets. The weights of these wavelets are then subject to an optimization 
procedure that maximizes the correlation coefficient of the least-squares fit. 

Specifically, let H,(.) denote the Hermite function of order p and let us decompose the 
analysing wavelet g(.) as 

M 

g ( x .  IC,H = C c P ~ , ( x )  exp(-x2/2) . (8) 

For the sake of clarity, the parametric dependence of g(.) on the set of random coefficients 
cp’s has been explicitly indicated. The choice of the maximum order M will be discussed 
below. The decomposition of the wavelet transform corresponding to (8) is 

p=1 

M 

p-1 
Tg(a. IcpD = ~ c ~ T H , ( Q )  . (9) 

Because we are interested in the scaling of the wavelet transform, it is clear that the free 
parameters are the M - 1 independent ratios of the coefficients c,. For example, the 
normalization condition E,”==, cp = I can be imposed 

Practically, we used the simplest optimization technique consisting in a series of length 
N of Monte Carlo trials. For each choice of the set [cp, p = 1,. . . , M )  the correlation 
coefficient K ( ( c p ) )  of log (T8(u, [c,])[ with respect to log(u) is calculated. Between the N 
possible choices, the optimal wavelet gop‘ is provided by the set of coefficients such that 
the maximum K is obtained. The scaling exponent is then estimated by a least-squares fit. 

Concerning the choice of the maximum order M in (8). one has to be aware that when 
the order p is increased the Hermite functions become less and less local. As a consequence, 



Wavelet analysis of a Gaussian Kolmogorov signal 6097 

~. ~ 300.0 

Figure 2. The histogram (small) of scaling exponents obtained by the optimal wavelet technique 
wi? the same conditions as in figure 1. superposed on the histogram of figure 1 (large) for 
comparison. 

h 

Figure 3. The histogram of exponents of the Modane turbulent signal measured by the optimal 
wavelet technique. The ratio between the maximal and the minimal scale used for Ihe fit is 500. 
Three wavelets are used for the optimization. 

with a finite inertial range, in order to avoid a mixing between the contributions coming 
from the inertial range and the non-scaling scale regions, one cannot increase M at will. We 
remark that by using the optimal wavelet technique the analysing wavelet is not the same 
at all the points x where the exponent is calculated. This does not constitute a problem but, 
on the contrary, is in the spirit of wavelet transforms which focus on local propetties. 

In order to test the validity of the techniques previously outlined, we have analysed the 
same signal as that in figure 1. In the optimization procedure, three wavelets are used and 
the number of Monte Carlo trials is 400 at each point. The resulting histogram is shown 
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Figure 4. Histogram of scaling exponenls of Ihe Modane turbulent signal Wen from 1121. The 
fact [hat the hystogram is much broader than in figure 3 is an Mefact 

in figure 2 superposed on the histog& of figure 1 to make the comparison easier. The 
reduction in the spurious scatter is remarkable. The average value is 0.33, the standard 
deviation is 0.09 and the average correlation coefficient of the least-squares fits used to 
evaluate the scaling exponents is 0.7. 

As a final check we have applied the optimized wavelet technique to the same Modane 
turbulence data used in [ 121 (for more details about these data the reader is referred to 1121 
and references therein). The resulting histogram is shown in figure 3. The reduction of the 
scatter with respect to the histogram in [12] (reproduced here as figure 4) confirms the fact 
that the latter does not reflect a real distribution of exponents in turbulent signals. 

In our opinion, the results contained in this paper are related to the nature of self- 
similariiy of turbulent signals. For a pure multiplicative process, there is no local scaling 
exponent but by the largedeviation theory one can show that the moments are indeed power 
laws. Recently, the same idea has been used in [20] to produce a signal which is self-similar 
in a statistical sense but has no scaling exponent at a single point. The application of wavelet 
techniques to such a signal produces the same results as for turbulence data. When one 
uses global techniques, as in [I31 or such as structure functions, the signal appears self- 
similar with well-defined scaling exponents. If local techniques, like those discussed in 
this paper, are used, the most probable exponent is selected with a small variance due to 
finite-size effects. We then argue that”the scaling exponents and the singularity spectrum 
D(h) originally proposed in [4] must be interpreted in the sense of multiplicative processes. 

Acknowledgments 

We would like to thank M Farge and U Frisch for extensive discussions. We are grateful 
to Y Gagne and E J Hopfinger for providing us with a copy of the Modane data. This 
work was supported by the EEC (El-0212-C) and DRET (90/1444). One of us (DP) was 
supported by the Fondation des Treilles. 

References 

[ I 1  Kolmogomv A N 1941 Dokl. Ahd. NnrkSSSR 30 301 



Wavelet analysis of a Gaussian Kolmogorov signal 6099 

[2] Landau L D and Lifshilz E M 1987 FluidMechanics (Oxford: Pergamon) 2nd edn 
[3] Anselmet F, G a p  Y. Hopfinger E I and Antonia R A 1984f. Fluid Mech. 140 63 
[4] Parisi G and Frisch U 1983 Turbulence ond Predictobilily in Geophysical Fluid Dynamics (Proe. Inr. School 

[SI Frisch U and Vergassola M I991 Ewophys. Lett. 14 439 
[q Kolmogorov A N 1962 f. FluidMech. 13 82 
[7] Bemi R. Paladin G, F’arisi 0 and Vulpiani A 1983 f. Phys. A: Murh. Gen. 17 3521 
[8] Gagne Y and Caslaing B 1991 C.R. Acod. Sci. 312 414 
191 Meneveau C and Sreenivasan K R 1991 1. Fluid Mech. 224 429 

of Physic.? ‘E Fermi‘. VRrmM, ItulyJ ed M Ghil, R Benzi and G F’arisi, p 84 

[IO] Am6odo A, Grasseau G and Holschneider M I988 Phys. Rev. Lett. 61 2287 
[Ill Argoul F, Amhdo  A, Grasseau G, Gagne Y, Hopfinger E 1 and Frisch U 1989 Nature 338 51 
[I21 Bacry E. Amdodo A, Frisch U, G a p e  Y and Hopfinger E J 1990 Turbulence and Coherenr Structures ed 

0 Metals and M Lesieur (Dordrechc Kluwer) p 203 
[I31 Muzy J F, Bacry E and Am6odo A 1991 Phys. Rev. Len. 61 3515 
[I41 Benzi R and Vergassola M 1991 Fluid Dyn. Res. 8 117 
[IS] Holschneider M 1988 f. Stat. Phys. 50 963 
[I61 ~Vergassola M and Frisch U 1991 Physicu 54D 58 
[I71 Mandelbrot B 1965 C.R. Acod. Sci. 260 3274 
[I81 Mallat S and Huang W L 1992 IEEE Tmm. In& Theor. 38 617 
[I91 Farge M 1991 private communidon 
I201 Bemi R, Biferale L. Crisanti A, Paladin G, Vergassola M and Vulpiani A 1993 PhyScu 65D 352 


